Source code for pystoned.CQER

# import dependencies
from pyomo.environ import ConcreteModel, Set, Var, Objective, minimize, Constraint, log
from pyomo.core.expr.numvalue import NumericValue
import numpy as np
import pandas as pd

from .constant import CET_ADDI, CET_MULT, FUN_PROD, FUN_COST, RTS_CRS, RTS_VRS, OPT_LOCAL, OPT_DEFAULT
from .utils import tools, interpolation


[docs] class CQR: """Convex quantile regression (CQR) """
[docs] def __init__(self, y, x, tau, z=None, cet=CET_ADDI, fun=FUN_PROD, rts=RTS_VRS): """CQR model Args: y (float): output variable. x (float): input variables. z (float, optional): Contextual variable(s). Defaults to None. tau (float): quantile. cet (String, optional): CET_ADDI (additive composite error term) or CET_MULT (multiplicative composite error term). Defaults to CET_ADDI. fun (String, optional): FUN_PROD (production frontier) or FUN_COST (cost frontier). Defaults to FUN_PROD. rts (String, optional): RTS_VRS (variable returns to scale) or RTS_CRS (constant returns to scale). Defaults to RTS_VRS. """ # TODO(error/warning handling): Check the configuration of the model exist self.y, self.x, self.z = tools.assert_valid_basic_data(y, x, z) self.tau, self.cet, self.fun, self.rts = tau, cet, fun, rts # Initialize the CQR model self.__model__ = ConcreteModel() if type(self.z) != type(None): # Initialize the set of z self.__model__.K = Set(initialize=range(len(self.z[0]))) # Initialize the variables for z variable self.__model__.lamda = Var(self.__model__.K, doc='z coefficient') # Initialize the sets self.__model__.I = Set(initialize=range(len(self.y))) self.__model__.J = Set(initialize=range(len(self.x[0]))) # Initialize the variables self.__model__.alpha = Var(self.__model__.I, doc='alpha') self.__model__.beta = Var(self.__model__.I, self.__model__.J, bounds=(0.0, None), doc='beta') self.__model__.epsilon = Var(self.__model__.I, doc='error term') self.__model__.epsilon_plus = Var( self.__model__.I, bounds=(0.0, None), doc='positive error term') self.__model__.epsilon_minus = Var( self.__model__.I, bounds=(0.0, None), doc='negative error term') self.__model__.frontier = Var(self.__model__.I, bounds=(0.0, None), doc='estimated frontier') # Setup the objective function and constraints self.__model__.objective = Objective(rule=self.__objective_rule(), sense=minimize, doc='objective function') self.__model__.error_decomposition = Constraint(self.__model__.I, rule=self.__error_decomposition(), doc='decompose error term') self.__model__.regression_rule = Constraint(self.__model__.I, rule=self.__regression_rule(), doc='regression equation') if self.cet == CET_MULT: self.__model__.log_rule = Constraint(self.__model__.I, rule=self.__log_rule(), doc='log-transformed regression equation') self.__model__.afriat_rule = Constraint(self.__model__.I, self.__model__.I, rule=self.__afriat_rule(), doc='afriat inequality') # Optimize model self.optimization_status, self.problem_status = 0, 0
[docs] def optimize(self, email=OPT_LOCAL, solver=OPT_DEFAULT): """Optimize the function by requested method Args: email (string): The email address for remote optimization. It will optimize locally if OPT_LOCAL is given. solver (string): The solver chosen for optimization. It will optimize with default solver if OPT_DEFAULT is given. """ # TODO(error/warning handling): Check problem status after optimization self.problem_status, self.optimization_status = tools.optimize_model( self.__model__, email, self.cet, solver)
def __objective_rule(self): """Return the proper objective function""" def objective_rule(model): return self.tau * sum(model.epsilon_plus[i] for i in model.I) \ + (1 - self.tau) * sum(model.epsilon_minus[i] for i in model.I) return objective_rule def __error_decomposition(self): """Return the constraint decomposing error to positive and negative terms""" def error_decompose_rule(model, i): return model.epsilon[i] == model.epsilon_plus[i] - model.epsilon_minus[i] return error_decompose_rule def __regression_rule(self): """Return the proper regression constraint""" if self.cet == CET_ADDI: if self.rts == RTS_VRS: if type(self.z) != type(None): def regression_rule(model, i): return self.y[i] == model.alpha[i] \ + sum(model.beta[i, j] * self.x[i][j] for j in model.J) \ + sum(model.lamda[k] * self.z[i][k] for k in model.K) + model.epsilon[i] return regression_rule def regression_rule(model, i): return self.y[i] == model.alpha[i] \ + sum(model.beta[i, j] * self.x[i][j] for j in model.J) \ + model.epsilon[i] return regression_rule elif self.rts == RTS_CRS: if type(self.z) != type(None): def regression_rule(model, i): return self.y[i] == sum(model.beta[i, j] * self.x[i][j] for j in model.J) \ + sum(model.lamda[k] * self.z[i][k] for k in model.K) + model.epsilon[i] return regression_rule def regression_rule(model, i): return self.y[i] == sum(model.beta[i, j] * self.x[i][j] for j in model.J) \ + model.epsilon[i] return regression_rule elif self.cet == CET_MULT: if type(self.z) != type(None): def regression_rule(model, i): return log(self.y[i]) == log(model.frontier[i] + 1) \ + sum(model.lamda[k] * self.z[i][k] for k in model.K) + model.epsilon[i] return regression_rule def regression_rule(model, i): return log(self.y[i]) == log(model.frontier[i] + 1) + model.epsilon[i] return regression_rule raise ValueError("Undefined model parameters.") def __log_rule(self): """Return the proper log constraint""" if self.cet == CET_MULT: if self.rts == RTS_VRS: def log_rule(model, i): return model.frontier[i] == model.alpha[i] + sum( model.beta[i, j] * self.x[i][j] for j in model.J) - 1 return log_rule elif self.rts == RTS_CRS: def log_rule(model, i): return model.frontier[i] == sum( model.beta[i, j] * self.x[i][j] for j in model.J) - 1 return log_rule raise ValueError("Undefined model parameters.") def __afriat_rule(self): """Return the proper afriat inequality constraint""" if self.fun == FUN_PROD: __operator = NumericValue.__le__ elif self.fun == FUN_COST: __operator = NumericValue.__ge__ if self.cet == CET_ADDI: if self.rts == RTS_VRS: def afriat_rule(model, i, h): if i == h: return Constraint.Skip return __operator( model.alpha[i] + sum(model.beta[i, j] * self.x[i][j] for j in model.J), model.alpha[h] + sum(model.beta[h, j] * self.x[i][j] for j in model.J)) return afriat_rule elif self.rts == RTS_CRS: def afriat_rule(model, i, h): if i == h: return Constraint.Skip return __operator( sum(model.beta[i, j] * self.x[i][j] for j in model.J), sum(model.beta[h, j] * self.x[i][j] for j in model.J)) return afriat_rule elif self.cet == CET_MULT: if self.rts == RTS_VRS: def afriat_rule(model, i, h): if i == h: return Constraint.Skip return __operator( model.alpha[i] + sum(model.beta[i, j] * self.x[i][j] for j in model.J), model.alpha[h] + sum(model.beta[h, j] * self.x[i][j] for j in model.J)) return afriat_rule elif self.rts == RTS_CRS: def afriat_rule(model, i, h): if i == h: return Constraint.Skip return __operator( sum(model.beta[i, j] * self.x[i][j] for j in model.J), sum(model.beta[h, j] * self.x[i][j] for j in model.J)) return afriat_rule raise ValueError("Undefined model parameters.")
[docs] def display_status(self): """Display the status of problem""" print(self.optimization_status)
[docs] def display_alpha(self): """Display alpha value""" tools.assert_optimized(self.optimization_status) tools.assert_various_return_to_scale(self.rts) self.__model__.alpha.display()
[docs] def display_beta(self): """Display beta value""" tools.assert_optimized(self.optimization_status) self.__model__.beta.display()
[docs] def display_lamda(self): """Display lamda value""" tools.assert_optimized(self.optimization_status) tools.assert_contextual_variable(self.z) self.__model__.lamda.display()
[docs] def display_residual(self): """Dispaly residual value""" tools.assert_optimized(self.optimization_status) self.__model__.epsilon.display()
[docs] def display_positive_residual(self): """Dispaly positive residual value""" tools.assert_optimized(self.optimization_status) self.__model__.epsilon_plus.display()
[docs] def display_negative_residual(self): """Dispaly negative residual value""" tools.assert_optimized(self.optimization_status) self.__model__.epsilon_minus.display()
[docs] def get_status(self): """Return status""" return self.optimization_status
[docs] def get_alpha(self): """Return alpha value by array""" tools.assert_optimized(self.optimization_status) tools.assert_various_return_to_scale(self.rts) alpha = list(self.__model__.alpha[:].value) return np.asarray(alpha)
[docs] def get_beta(self): """Return beta value by array""" tools.assert_optimized(self.optimization_status) beta = np.asarray([i + tuple([j]) for i, j in zip(list(self.__model__.beta), list(self.__model__.beta[:, :].value))]) beta = pd.DataFrame(beta, columns=['Name', 'Key', 'Value']) beta = beta.pivot(index='Name', columns='Key', values='Value') return beta.to_numpy()
[docs] def get_lamda(self): """Return beta value by array""" tools.assert_optimized(self.optimization_status) tools.assert_contextual_variable(self.z) lamda = list(self.__model__.lamda[:].value) return np.asarray(lamda)
[docs] def get_residual(self): """Return residual value by array""" tools.assert_optimized(self.optimization_status) residual = list(self.__model__.epsilon[:].value) return np.asarray(residual)
[docs] def get_positive_residual(self): """Return positive residual value by array""" tools.assert_optimized(self.optimization_status) residual_plus = list(self.__model__.epsilon_plus[:].value) return np.asarray(residual_plus)
[docs] def get_negative_residual(self): """Return negative residual value by array""" tools.assert_optimized(self.optimization_status) residual_minus = list(self.__model__.epsilon_minus[:].value) return np.asarray(residual_minus)
[docs] def get_frontier(self): """Return estimated frontier value by array""" tools.assert_optimized(self.optimization_status) if self.cet == CET_MULT: frontier = np.exp(np.log(np.asarray(self.y)) - self.get_residual()) elif self.cet == CET_ADDI: frontier = np.asarray(self.y) - self.get_residual() return np.asarray(frontier)
[docs] def get_predict(self, x_test): """Return the estimated function in testing sample""" tools.assert_optimized(self.optimization_status) if self.rts == RTS_VRS: alpha, beta = self.get_alpha(), self.get_beta() elif self.rts == RTS_CRS: alpha, beta = np.zeros((self.get_beta()).shape[0]), self.get_beta() return interpolation.interpolation(alpha, beta, x_test, fun=self.fun)
[docs] class CER(CQR): """Convex expectile regression (CER) """
[docs] def __init__(self, y, x, tau, z=None, cet=CET_ADDI, fun=FUN_PROD, rts=RTS_VRS): """CER model Args: y (float): output variable. x (float): input variables. z (float, optional): Contextual variable(s). Defaults to None. tau (float): expectile. cet (String, optional): CET_ADDI (additive composite error term) or CET_MULT (multiplicative composite error term). Defaults to CET_ADDI. fun (String, optional): FUN_PROD (production frontier) or FUN_COST (cost frontier). Defaults to FUN_PROD. rts (String, optional): RTS_VRS (variable returns to scale) or RTS_CRS (constant returns to scale). Defaults to RTS_VRS. """ super().__init__(y, x, tau, z, cet, fun, rts) self.__model__.objective.deactivate() self.__model__.squared_objective = Objective( rule=self.__squared_objective_rule(), sense=minimize, doc='squared objective rule')
def __squared_objective_rule(self): def squared_objective_rule(model): return self.tau * sum(model.epsilon_plus[i] ** 2 for i in model.I) \ + (1 - self.tau) * \ sum(model.epsilon_minus[i] ** 2 for i in model.I) return squared_objective_rule